

PRUEBA 5° AÑO

Antes de empezar:

- Leé con atención todas las consignas de la prueba.
- Podés comenzar por los ejercicios que te resulten más fáciles o que conozcás mejor.
- Usá lápiz y papel para realizar tus procedimientos. Si lo necesitás, podés usar la calculadora.
- Recordá marcar con una cruz (X) la opción que consideres correcta en la grilla de respuestas.
- Si te equivocás, avisá al docente para que te indique cómo anular la respuesta anterior y registrar la nueva.
- Trabajá con calma y revisá tus respuestas antes de entregar la prueba.

Ejercicio 1.

El seno de un ángulo en el primer cuadrante, siempre es un número:

- a) positivo.
- b) negativo.
- c) cero.
- d) entero.

Ejercicio 2.

Dada la función trigonométrica:

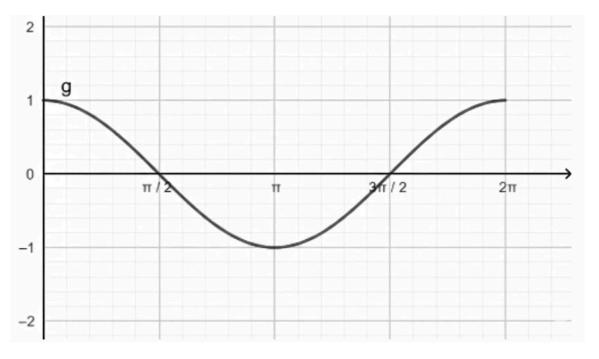
$$f(x) = 5 \cdot sen(2x)$$

Si x = 3, f(x) vale aproximadamente:

- a) 11
- b) 5, 10 c) 0, 52
- d) 0, 44

Ejercicio 3.

Observá el gráfico de la función g(x) = cos(x)

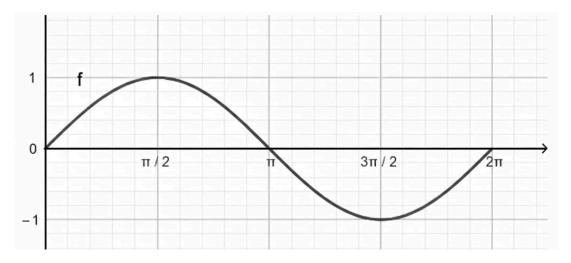


¿Cuál de las siguientes afirmaciones es verdadera para esta función?

- a) Su imagen está definida en el intervalo [-1, 1].
- b) Solo está definida para ángulos entre $0\ y\ \pi.$
- c) Es una función que siempre crece.
- d) Su valor máximo es 2.

Ejercicio 4.

En una rueda que gira, la altura de un punto respecto al centro está representada por la función f(x) = sen(x), donde x es el ángulo en radianes.



Si queremos encontrar el momento en que el punto alcanza su máxima altura, ¿qué estrategia debemos usar?

- a) Buscar el valor de x para el cual sen(x) = 0
- b) Identificar el valor de x donde sen(x) = 1
- c) Identificar el valor de x donde sen(x) = -1
- d) Asumir que la altura máxima es cuando x=0

Ejercicio 5.

¿Cuál de las siguientes situaciones puede considerarse un experimento aleatorio?

- a) Elegir al azar una carta de un mazo.
- b) Estudiar mucho para un examen y sacar una buena nota.
- c) Hacer una torta siguiendo una receta.
- d) Tomar agua cuando se tiene sed.

Ejercicio 6.

En una bolsa hay 9 bolitas rojas, 5 verdes y 6 azules.

Si se saca una bolita al azar, ¿cuál es la probabilidad de que no sea azul?

a)
$$\frac{2}{3}$$

b)
$$\frac{1}{14}$$
 c) $\frac{6}{20}$

c)
$$\frac{6}{20}$$

d)
$$\frac{14}{20}$$

Ejercicio 7.

Una vacuna tiene un 70 % de eficacia para prevenir una determinada enfermedad. ¿Qué significa esto en relación con la toma de decisiones sobre vacunarse?

- a) Que la vacuna es segura, así que no hay posibilidad de enfermarse.
- b) Es seguro que 70 de cada 100 personas vacunadas no se contagiarán a causa de ninguna enfermedad.
- c) Que existe una alta probabilidad de protección, lo cual puede influir en la decisión de vacunarse.
- d) Que 30 de cada 100 personas que se vacunen tendrán la enfermedad de forma grave.

Ejercicio 8.

Un alumno afirma que puede usar la regla de Laplace para calcular la probabilidad de que una persona llegue tarde al trabajo, diciendo:

"Como solo puede llegar temprano o tarde, hay dos resultados posibles, así que la probabilidad de llegar tarde es $\frac{1}{2}$ ".

¿Qué explicación es válida respecto al uso de la regla de Laplace en esta situación?

- a) Es correcto, porque hay dos resultados posibles.
- b) Es incorrecto, porque no se cumple la condición de equiprobabilidad.
- c) Es correcto, porque toda situación con dos resultados posibles tiene probabilidad $\frac{1}{2}$.
- d) Es incorrecto, porque la situación no puede analizarse numéricamente.

Ejercicio 9.

¿Cuál de las siguientes igualdades es una identidad?

a)
$$sen^2x - cos^2x = 1$$

$$b) sen x^2 - cos x^2 = 1$$

c)
$$sen x^2 + cos x^2 = 1$$

$$d) sen^2 x + cos^2 x = 1$$

Ejercicio 10.

Al resolver la ecuación trigonométrica $\cos x = -0, 5$; en el intervalo $[0^{\circ}, 360^{\circ}]$, encontramos:

- a) Solamente $x = 120^{\circ}$
- b) Solamente $x=240^{\circ}$

c)
$$x = 120^{\circ} \text{ y } x = 240^{\circ}$$

d)
$$x = 60^{\circ} \text{ y } x = 300^{\circ}$$

Ejercicio 11.

Mirá el siguiente procedimiento matemático:

$$\frac{\frac{\pi}{6}}{2\pi} = \frac{x}{360^{\circ}} \rightarrow x = \frac{360^{\circ} \cdot \pi}{6 \cdot 2\pi} \rightarrow x = \frac{360^{\circ}}{12} \rightarrow x = 30^{\circ}$$

Ese planteo sirve para resolver el siguiente problema:

- a) ¿Cuántos radianes corresponden a $\frac{\pi}{6}$ grados sexagesimales?
- b) ¿Cuántos grados sexagesimales corresponden a $\frac{\pi}{6}$ radianes?
- c) Si un ángulo de 360° es equivalente a $\frac{\pi}{6}$ radianes, entonces el ángulo x, ¿cuánto vale?
- d) Para hallar el ángulo x, medido en radianes, que corresponde con 360° , procedemos así.

Ejercicio 12.

Si se sabe que $sen 30^{\circ} = \frac{1}{2}$

Usando la fórmula: $sen^2x + cos^2x = 1$.

¿Cuál es el valor del cos 30°?

a)
$$cos 30^{\circ} = \frac{\sqrt{5}}{2}$$

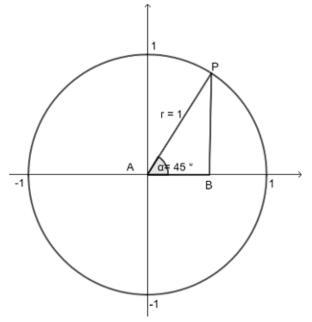
b)
$$\cos 30^{\circ} = \frac{3}{4}$$

c)
$$cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

d)
$$cos 30^{\circ} = \frac{1}{2}$$

Ejercicio 13.

El gráfico muestra la circunferencia trigonométrica de radio igual a 1 sobre la cual se ha construido un ángulo de 45°.



Podemos asegurar que:

a)
$$sen 45^\circ = \frac{AB}{1}$$

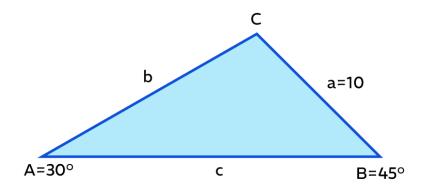
b)
$$sen 45^{\circ} = \frac{AB}{PB}$$

c)
$$cos 45^{\circ} = \frac{AB}{1}$$

a)
$$sen 45^{\circ} = \frac{AB}{1}$$
 b) $sen 45^{\circ} = \frac{AB}{PB}$ c) $cos 45^{\circ} = \frac{AB}{1}$ d) $cos 45^{\circ} = \frac{1}{AB}$

Ejercicio 14.

En un triángulo, se conoce que el ángulo A mide 30°, el lado opuesto a ese ángulo (a) mide 10~cm, y el ángulo B mide 45° .



Utilizando el Teorema del Seno, ¿cuál es el valor aproximado del lado b (opuesto al ángulo B)?

Utilizá:
$$\frac{a}{sen A} = \frac{b}{sen B} = \frac{c}{sen C}$$

- a) 14, 14 cm. b) 10 cm. c) 7, 07 cm. d) 2 cm.

Ejercicio 15.

¿Cuál de las siguientes fórmulas corresponde al uso correcto del Teorema del Coseno para calcular el lado c, opuesto al ángulo C?

a)
$$c = \frac{a \cdot b}{sen C} \cdot c$$

b)
$$c = \sqrt{a^2 + b^2 - 2ab \cdot cos C}$$

c)
$$\frac{a}{sen A} = \frac{b}{sen B} = \frac{c}{sen C}$$

d)
$$c = a \cdot cos C + b \cdot cos C$$

Ejercicio 16.

¿Cuál de las siguientes listas corresponde a ángulos cuya razón trigonométrica seno es positiva?

- a) 90°, 180°, 270°
- b) 210°, 270°, 330°
- c) 30°, 120°, 150°
- d) 45°, 135°, 225°

Ejercicio 17.

En un triángulo oblicuángulo se conocen los lados $a=7\ cm$, $b=5\ cm$ y el ángulo $C = 60^{\circ}$.

¿Cuál es el valor aproximado del lado c, opuesto al ángulo C?

Usá la fórmula: $c^2 = a^2 + b^2 - 2ab \cdot cos(C)$

- a) 39 cm. b) 10, 44 cm. c) 6, 24 cm. d) 1, 41 cm.

Ejercicio 18.

Un estudiante afirma:

"En un triángulo rectángulo, si el ángulo agudo mide 30° , entonces el cateto opuesto a ese ángulo siempre será la mitad de la hipotenusa".

¿Cuál de las siguientes afirmaciones justifica correctamente si esa afirmación es verdadera o falsa?

- a) Es falsa, porque en los triángulos rectángulos los catetos nunca pueden ser más pequeños que la hipotenusa.
- b) Es verdadera, porque en un triángulo rectángulo con un ángulo de 30° , la razón seno es $\frac{1}{2}$, y por eso el cateto opuesto es la mitad de la hipotenusa.
- c) Es falsa, porque no se puede aplicar trigonometría si no se conocen los lados del triángulo.
- d) Es verdadera, pero solo si los tres lados miden igual.

Hoja de Fórmulas

Concepto	Fórmula A = área, P = perímetro
Cuadrado	$A = L^2; P = 4L$
Rectángulo	$A = b \cdot h; P = 2 \cdot (b + h)$
Triángulo	$A = \frac{(b \cdot h)}{2}$; $P = suma \ de \ lados$
Circunferencia	$A = \pi \cdot r^2; P = 2\pi \cdot r$
Teorema del Seno	$\frac{a}{sen(A)} = \frac{b}{sen(B)} = \frac{c}{sen(C)}$ $c^{2} = a^{2} + b^{2} - 2ab \cdot cos(C)$
Teorema del Coseno	$c^2 = a^2 + b^2 - 2ab \cdot cos(C)$
Teorema de Pitágoras	$h^2 = a^2 + b^2$
Razones trigonométricas	$sen(A) = \frac{co}{h}, cos(A) = \frac{ca}{h}, tan(A) = \frac{co}{ca}$
Media aritmética / promedio	$\frac{1}{x} = \frac{\sum x_i}{n}$ datos simples
	$\overline{x} = rac{\Sigma f_i \cdot x_i}{\Sigma f_i}$ datos agrupados
Mediana	Si n es impar, la mediana es el valor que
	ocupa la posición central: $Me = x_{(2n+1)}$ Si n es par, la mediana es el promedio de los
	dos valores centrales: $Me = \frac{x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}}{2}$
	$Me = L_i + \frac{\frac{n}{2} - F_i - 1}{f_i}$ datos agrupados.
Varianza	$\sigma^2 = \frac{\sum (x_i - \overline{x})^2}{n}$ datos simples
	$\sigma^2 = \frac{\sum f_i (x_i - \overline{x})^2}{\sum f_i}$ datos agrupados
Desviación típica	$\sigma = \sqrt{\sigma^2}$
Amplitud del intervalo	A = valor máx - valor mín
Fórmula general para raíces de ecuaciones cuadráticas	$x = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$